夏靖远/Jingyuan Xia
我2020年在伦敦帝国理工学院取得博士学位,本硕皆师从国防科技大学电子科学学院黎湘院士,目前在黎院士团队分管硕士/博士招生,以及博士后/教职招聘,有兴趣的也欢迎邮件咨询了解团队招录的详细信息。
目前我是国防科技大学电子科学学院的副教授(硕导),本人博士期间主攻方向是传统非凸优化理论与神经网络模型的结合,粗浅地建立一套学习辅助的灰箱优化理论体系。主要解决的是逆问题和盲逆问题求解中的各种难题,致力于在完整保留问题模型前提下引入神经网络化的学习辅助模块,实现无监督、无预训练地问题优化。主要方向围绕统计机器学习理论在盲逆问题优化求解与大模型语义表征学习方向开展研究,主要课题包括智能优化理论与方法、底层视觉、时序信号大模型等。相对来说,因为我喜欢和学生一起探讨前沿技术进展与课题方案设计,课题会跟进最新技术发展进行理论与应用创新。
项目经费充裕,所以计算资源、开会交流、软硬配置方面不用担心。不挑学生科研基础,希望你是踏实勤奋、自我驱动的坚守者就行,功不唐捐、玉汝于成。
关于我:嘴碎、性急、嗓门大、好为人师,毒舌、强势、讲原则、爱请吃饭。我自己博士淋过雨,所以不会给你泼开水。但是金杯共汝饮,学术不相饶,生活上可以一起开黑、旅游、见天地、见众生、见自己,学业上追求培育严谨、踏实、讲逻辑、有条理、知辩证。
关于课题组:学生补助每月到手硕士(4-6千)、博士(7-9千),个人课题:项目工作时间比大致在8:2,软硬件方面提供完备保障。
关于你:我享受从零开始培养爱好科研的学者,排斥学术投机主义和精致利己主义。第一份工作会给方案、推代码、rewrite论文,但中后期希望你能独立自主探索未知的科技前行之路,享受日积跬步、以致千里的成长满足感。
欢迎邮箱咨询任何你感兴趣的事情。
新闻动态
2026年1月: 祝贺杨志雄和孔得荣获批 湖南省自然科学基金青年学生基础研究项目!
2025年12月: 祝贺杨志雄获批 国家自然科学基金青年学生基础研究项目(博士研究生) !
2025年12月: 论文 A prototype-based semi-supervised learning method for few-shot SAR target recognition 被 J-STARS 录用!
2025年11月: 论文 Ultra-High-Definition Image Restoration via High Frequency Enhanced Transformer 被 TCSVT 录用!
2025年11月: 论文 Dynamic Semantic Tokenization for Time Series via Elastic Sampling on Physics-aware Perception 被 AAAI 2026 录用!
2025年10月: 论文 A Learning-aided Unsupervised Method for Sparse Aperture ISAR Imaging and Autofocusing 被 TAES 录用!
2025年9月: 论文 Luminance-Aware Statistical Quantization: Unsupervised Hierarchical Learning for Illumination Enhancement 被 NeurIPS 2025 录用!
2025年6月: 一篇论文被 TIP 录用!
2025年5月: TPAMI 2024 论文 Blind Super-Resolution Via Meta-Learning and Markov Chain Monte Carlo Simulation 入选 ESI高被引论文 (Top 1%) 及 热点论文 (Top 0.1%)。
2025年4月: 两名本科生的工作被 GRSL 录用!
2025年3月: 一篇论文被 ICML 录用!
2024年12月: 论文 A Cross-Modal Multi-Attitude Framework for the Generation of Space Target ISAR Images 被 ICASSP 录用!
2024年5月: 论文 Blind Super-Resolution Via Meta-Learning and Markov Chain Monte Carlo Simulation 被 TPAMI 录用!
2024年3月: 论文 A Dynamic Kernel Prior Model for Unsupervised Blind Image Super-Resolution 被 CVPR 录用!
2023年9月: 论文 Meta-Learning Based Domain Prior with Application to Optical-ISAR Image Translation 被 TCSVT 录用!
2023年9月: 论文 Meta-Learning Based Alternating Minimization Algorithm for Nonconvex Optimization 被 TNNLS 录用!
发表论文
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025
Paper / PDF
WST-DRFSL is a semi-supervised few-shot target recognition framework that employs a dynamic refinement strategy. This strategy alternately refines the classifier and the entire model, accelerating convergence while achieving high recognition accuracy across extensive datasets.
IEEE Transactions on Circuits and Systems for Video Technology, 2025
Paper / PDF
HiFormer is a dual-branch Transformer architecture designed for Ultra-High-Definition (UHD) image restoration. It combines a high-resolution branch that preserves fine details using directionally-sensitive large-kernel convolutions with a low-resolution branch that models global context via self-attention. This collaboration effectively compensates for high-frequency losses caused by downsampling and attention mechanisms, enabling efficient and high-fidelity restoration on consumer-grade GPUs.
AAAI, 2026
PATK reformulates time series tokenization as a physics-aware semantic segmentation process over dual-domain signal distributions, leveraging a hidden Markov modeling mechanism to dynamically adapt token boundaries and achieve robust, interpretable representation learning across diverse temporal domains.
IEEE Transactions on Aerospace and Electronic Systems, 2025
Paper / PDF / Code
LAOF is a general unsupervised radar imaging framework. We have verified the SOTA performance of LAOF in sparse aperture ISAR imaging and auto-focusing problems under extremely low sparsity rates, extremely low signal-to-noise ratios, and in real-world data.
NeurIPS, 2025
Paper / PDF / Code
LASQ reformulates low-light image enhancement as a statistical sampling process over hierarchical luminance distributions, leveraging a diffusion-based forward process to autonomously model luminance transitions and achieve unsupervised, generalizable light restoration across diverse illumination conditions.
IEEE Geoscience and Remote Sensing Letters, 2025
Paper / PDF
SAKE performs unsupervised HSI super-resolution via adaptive blur kernel estimation, requiring no extra data and demonstrating superior generalization across scenarios.
IEEE Geoscience and Remote Sensing Letters, 2025
Paper / PDF
SAIG introduces a semantic-aware generation framework using segmentation-based refinement to produce high-fidelity ISAR images from optical inputs.
IEEE International Conference on Acoustics, Speech and Signal Processing, 2025
Paper / PDF
AORC learns attitude-aware latent representations and transforms them into high-fidelity ISAR images from optical inputs through a Brownian-Bridge-based diffusion process.
Neurocomputing, 2025
Paper / PDF / Code
STC leverages SIFT features and decoupled learning to tackle class imbalance in SAR target recognition, achieving strong generalization and SOTA performance.
CVPR, 2024
Paper / PDF / Code
The proposed DKP is a plug-and-play kernel estimation tool, which can be combined with the off-the-shelf image restoration model, e.g., DIP and Diffusion model, to realize unsupervised blind image super-resolution.
Zhixiong Yang and Jingyuan Xia and Shengxi Li and Wende Liu and Shuaifeng Zhi and Shuanghui Zhang and Li Liu and Yaowen Fu and Deniz Gündüz
Neural Networks, 2024
Paper / PDF / Code
DDSR is an unsupervised blind SISR method, which can handle different degradations, such as partial occlusion, noise, and low-light conditions.
Xia, Jingyuan and Yang, Zhixiong and Li, Shengxi and Zhang, Shuanghui and Fu, Yaowen and Gündüz, Deniz and Li, Xiang
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024
Paper / PDF / Code
This paper proposes a plug-and-play blind image super-resolution method based on the Meta-learning and Markov Chain Monte Carlo, which contributes to preventing bad local optimal solutions from the optimization perspective.
Liao, Huaizhang and Xia, Jingyuan and Yang, Zhixiong and Pan, Fulin and Liu, Zhen and Liu, Yongxiang
IEEE Transactions on Circuits and Systems for Video Technology, 2023
Paper / PDF / Code
The proposed MLDP aims to realize the image translation from optical domain to ISAR domain. To generate realistic ISAR images, MLDP learns the scattering distribution features and the classification identifying features in physical and task perspectives. Meanwhile, MLDP applies the meta-learning strategy to improve its generalization ability to generate ISAR images under limited training samples.
Xia, Jing-Yuan and Li, Shengxi and Huang, Jun-Jie and Yang, Zhixiong and Jaimoukha, Imad M. and Gündüz, Deniz
IEEE Transactions on Neural Networks and Learning Systems, 2023
Paper / PDF / Code
This paper proposes a meta-learning-based alternating minimization (MLAM) method for nonconvex problems of multiple variables, which aims to minimize a part of the global losses over iterations instead of carrying minimization on each subproblem, and it tends to learn an adaptive strategy to replace the handcrafted counterpart resulting in advance on superior performance.
Li, Miaomiao and Xia, Jingyuan and Xu, Huiying and Liao, Qing and Zhu, Xinzhong and Liu, Xinwang
IEEE Transactions on Cybernetics, 2023
Paper / PDF
An improved Localized incomplete multiple kernel k-means (LI-MKKM), called LI-MKKM with matrix-induced regularization (LI-MKKM-MR), is proposed by incorporating a matrix-induced regularization term to handle the correlation among base kernels. We theoretically show that the local kernel alignment is a special case of its global one with normalizing each base kernel matrices.
Yang, Zhixiong and Xia, Jing-Yuan and Luo, Junshan and Zhang, Shuanghui and Gündüz, Deniz
IEEE Wireless Communications Letters, 2022
Paper / PDF / Code
This letter proposes a learning aided gradient descent (LAGD) algorithm to solve the weighted sum rate (WSR) maximization problem for multiple-input single-output (MISO) beamforming. The proposed LAGD algorithm directly optimizes the transmit precoder through implicit gradient descent based iterations, at each of which the optimization strategy is determined by a neural network, and thus, is dynamic and adaptive.